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ABSTRACT 
 
We consider discrete and continuous risk distribution functions. Acceptable risk dis-
tribution function is defined and different types of stochastic comparisons are dis-
cussed. Acceptable, unacceptable and intermediate regions for the level of loss are 
determined. The similar characterization is used for describing the loss for the out-
comes in the sequence of harmful events. The loss is considered as acceptable, if ei-
ther all events result in a loss from the acceptable region or not more than k  of them 
result in a loss from the intermediate level. The Laplace transform methods are used 
for obtaining the probability of survival when harmful events from the Poisson proc-
ess are ‘too close’ to each other. 
 
Keywords: Acceptable risk, Stochastic comparison, Poisson process, Failure rate, 

 
 
1. INTRODUCTION 
 
Risk is usually understood as a danger that potentially harmful events represent to 
human beings, the environment or the economic values.  Numerical outcomes of these 
events can be considered as realizations of a random variable C , which in concrete 
applications describe an economic loss,  a number of casualties etc. Therefore, in this 
paper risk is measured by the corresponding loss and we will use these terms inter-
changeably.  Usually (see, for example, Ushakov and Harrison, 1994, Vrijling, 1995), 
the discrete setting is described in terms of probabilities and outcomes as the follow-
ing sequence:   

),(),...,,(),,(),0,( 221100 nn cpcpcpcp = ,                                     (1) 

where ip  is the probability of occurrence of realization i , whereas ic , ni ≤≤0  is the 
value of  loss associated with this realization. Some of these realizations can be harm-
less, which means that the loss in this case is equal to 0 .  The corresponding probabil-
ity is denoted by 0p . Without loss of generality, assume that ic  are strictly ordered: 

∞<<<<<= ncccc ...0 210  .                                          (2) 
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Therefore, the cumulative distribution function (Cdf) of risk )(cG  is simply defined 
via (1) and (2) as  
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The expected value of loss is: 

�=
n

iicpCE
0

][ ,                                                     (4) 

Relationship (4) can be already considered as some measure of risk, although usually 
it is too crude. It can be also used for comparison of different risks. Other relevant 
types of stochastic comparisons will be discussed in the next section. 
     Similar to the discrete case, the Cdf     

]Pr[)( cCcG ≤= .                                                  (5) 

is the probability that the loss will not exceed ∞<≤ cc 0: .  
     Closely related to the notion of risk is the notion of survivability. It can be inter-
preted in many ways.  By survivability of some system we shall understand its ability 
to perform the required function without damage and loss or with damage or loss not 
exceeding some prescribed value. The probability of performing this function under 
stated conditions defines the corresponding measure of survivability 
 
2.  COMPARISON OF RISKS  
 
As loss is usually inevitable, it is important to control and minimize it.  At many in-
stances a useful notion of acceptable loss ac  can be defined and the system’s per-
formance can be qualified as acceptable if, for instance: 

acCE ≤][  .                                                       (6) 

The value of ac  usually presents a rather natural requirement, i.e., the mean loss 
should be bounded by some reasonable amount. Ordering (6), however, is obviously 
not always sufficient because the large fluctuations of damage often cannot be ac-
cepted. The natural way to deal with this problem from the theoretical point of view is 
to consider the generalization of (6) via the acceptable risk function.  
     Let aC  denote a random variable of acceptable loss with )(cGa as its Cdf. It means 
that we accept the real loss C , if it is less in some reasonable stochastic sense than 

aC . The ordering (comparison) of the means of the corresponding Cdfs is the simplest 
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ordering of this type. Defining )(cGa  is a much more complex task than defining ac  
in (6), and it can need a detailed probabilistic analysis, case studies of similar systems 
or situations, expert’s opinions etc. If  C  does not exceed aC , then we assume that 
the real loss is acceptable. Thus, the main steps in the probabilistic risk analyses of the 
described type are: to obtain )(cG , to define )(cGa and to perform the corresponding 
stochastic comparison. In what follows in this section we consider some simple as-
pects of stochastic comparison for risks. 
     A well-known (Ross, 1996; Shaked and Shantikumar, 2006) and widely used type 
of stochastic comparison is the (usual) stochastic ordering defined as follows. If 

( ) GGccGcGcGcG aa −≡∞∈∀≥≤ 1);,0[,)()()()( ,                        (7) 

then 
ast CC ≤ ,                                                         (8) 

and the loss is considered as acceptable. Inequality (8) is a rather strong type of order-
ing. On the other hand, inequality (6) describes the weakest version of comparison. It 
is interesting to consider some relevant intermediate types of ordering taking into ac-
count ‘variability’ of C .  
     According to Ross (1996) (see also Kaas et al, 2001) a random variable aC  is said 
to be stochastically more variable than a random variable C , if for all 0≥b : 

dccGdccG
b b

a )()(� �
∞ ∞

≥ .                                           (9) 

When 0=b , equation (11) reduces to the comparison of the means. 
 
     The Cdf )(cGa  for the discrete case can be defined by equation (3), where ip  
should be substituted by iap . If acceptable values of nipia ,...,2,1, =  are obtained 
(this should be performed for each specific situation and can be based on various in-
formation including expert opinions etc.), then the obvious acceptance rule is: 

nipp iai ,...,2,1, =≤                                             (10) 

and it is clearly seen from (3) that these inequalities lead to stochastic ordering (7). 
Thus, (10) is a rather convenient sufficient condition for this ordering. It is also clear 
that it is not a necessary condition, which can be illustrated by the following example. 
 
Example 1 
 
 Let 2=n . Then 

�
�

�
�

�

∞<≤
<≤−

<≤−−
=

cc

cccp

ccpp

cG

2

212

121

,1

,1

0,1

)(                                       (11) 



 4 

and )(cGa is obtained via substituting 21 , pp  by aa pp ,21 , , respectively. Inequality (7) 

holds for this case, if  
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It is obvious that inequalities (10) for 2=n  imply (12) but not visa versa. On the 
other hand, the comparison in variability (9) leads to: 

a
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                                  (13) 

As 12 cc > , inequalities (12) imply inequalities (13) but not visa versa. This fact illus-
trates for the specific case under consideration that the comparison in variability is 
intermediate between the stochastic comparison (7) and the comparison in the mean. 
The latter in this example is defined by the first inequality in (17). 

 
     Using probabilities iap  and similar to (4), one can define the acceptable mean loss 
for the general discrete case as 
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Thus, if iai pp ≤ , then 
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The inverse is not necessarily true (as illustrated by Example 1): there can exist se-
quences of probabilities ip  for which inequality (14) is valid whereas inequality (10) 
does not hold. 
 
3. RECURRENT EVENTS 
 
3.1 The process of harmful shocks 
In this section we will consider risks caused by recurrent events. Assume that a se-
quence of possibly harmful instantaneous events is modeled by a stochastic point 
process. Assume also for simplicity that it is a non-homogeneous Poisson process 
(NHPP) with rate )(tλ . For convenience, let us call these events shocks. As previ-
ously, each shock is causing a random loss of amount iC . Let ,...2,1, −iCi  be i.i.d 
random variables with the continuous Cdf )(cG . Our interest is in considering overall 
consequences of shocks in ),0[ t .  
     Divide the −c axis into n  regions 

),ˆ(],...,ˆ,ˆ(],ˆ,0( 1211 ∞−ncccc .                                       (15) 

The probability that the loss does not exceed level iĉ  is )ˆ( icG  and the probability that 
it is in the region ∞≡<< nji cnjijicc ˆ;,;],ˆ,ˆ(  is  
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).ˆ()0()ˆ(),ˆ(1),ˆ()ˆ( ,, iiiiniijji cGGcGpcGpcGcGp =−=−=−=                 (16) 

The first important step is to derive the probability )(tPj  that all events that occurred 

in ],0( t  had resulted in a loss not exceeding iĉ . This probability can be defined as   
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which can be easily seen directly: 
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 The corresponding proof for a more general case, when )(tpi  are functions of time, 
can be found in  Block et al (1985), Finkelstein (2003), Thomson (1988) to name a 
few. Similar to (17), the probability that all events had resulted in a loss in the range 
from ic  to jc  can be defined as 
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Specifically, for the 3 regions: 
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where )(tPs  is the probability that all events from the Poisson process in ),0[ t result 
in a ‘safe loss’; )(, tP us  denotes the probability that all events result in a loss in 

),[ us cc . Eventually, )(tPu denotes the supplementary (not having practical impor-
tance) probability that all events result in a loss in the region ).,[ ∞uc  
     Hence, the strongest criterion of the acceptable risk is when all events result in a 
loss from the first region. Then the performance of a system can be considered as ac-
ceptable. It is reasonable to consider a weaker version of the acceptance criterion al-
lowing, for instance, not more than ,...2,1=k  events to result in a loss from the inter-
mediate region ),[ us cc (an event in ),[ ∞uc  is “not allowed” at all). Thus, we want to 
assess the probability )(, tP ks  that all events result in a loss, not exceeding uc  whereas 

not more than k  of them are allowed to result in a loss in ),[ us cc . Let, for simplicity, 
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the initial process be the HPP with rate λ . Then it can be split into 3 independent 
Poisson processes with rates  

uuss ppp λλλ ,, ,  .                                                  (21) 

Due to our weakened acceptance risk criterion, the risk in ),0[ t  is defined as unac-
ceptable if at least one event from the process with rate upλ  will occur or if more than 
k  events from the process with rate usp ,λ will occur. These considerations lead to the 

following equation for the probability of safe (with acceptable risk) performance: 
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When there is no intermediate region: su cc = , we arrive at  

})1(exp{}exp{)()(0, tptptPtP suss −−=−=≡ λλ ,                        (23) 

which coincides with  the first equation in (19) for this specific case. 
 
3.2. Other acceptance criteria 
Let now an external shock’s impact be described by binary random variables with 
outcomes “survived” or “not survived”. The latter event for convenience will be 
called “failure” although it can represent accident, disaster etc. If each event from the 
Poisson process with rate )(tλ  is survived with probability p  and is not survived 
with a complementary probability p−1 , then, similar to (17), the survival probability 
(all shocks are survived) in ),0[ t  is given by 
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     Consider now a different criterion of survival. Assume that shocks from the NHPP 
with rate )(tλ  are harmless, if they are rather rare. A failure of a system occurs only 
when shocks are ‘too close’ (a system did not recover from the consequences of a pre-
vious shock). Let the recovering time τ  be random with the Cdf )(tR . The corre-
sponding survival probability can be written as (Finkelstein, 2007) 
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where the first term in the right hand side is  the probability  that there was not more 
than  one shock in ),0[ t and the integrand defines the joint probability of the following 
events 
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-the first shock occurred in ),[ dxxx + , 
-the second shock occurred in ),,[ dyyxyx +++   
-the time between two shocks y  is sufficient for recovering (probability- )(yR ),  
-the system is functioning without failures in ),[ tyx + . 

By )(ˆ tP in (25) we denote the probability of system’s functioning without failures in 
),0[ t  given that the first shock had occurred at 0=t . Similar to (25): 
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Equations (25) and (26) can be solved numerically. For the case of the homogeneous 
Poisson process with rate λ  these equations can be easily solved via the Laplace 
transform (Finkelstein, 2007):  
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where  )(sP  and  )(sR  denote Laplace transforms of )(tP  and )(tR , respectively. 
 
Example 2. Let τ  be exponentially distributed: }exp{1)( ttR µ−−= . Inverting the 
Laplace transform (27) for this special case: 

}exp{}exp{)( 2211 tsAtsAtP += ,                                 (28) 
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     Another example of acceptance criterion is as follows. Assume that we have two 
types of shock processes. The first is the process of potentially harmful shocks with 
rate 1λ  and the second is the process of ‘healing’ events with rate 2λ . A failure occurs 
when at least two shocks of the first type occur in a row. A healing event that occurs 
after the harmful event neutralizes the consequences of the previous shock. Similar to 
(25)-(26), the survival probability )(tP  is obtained from the following equations: 
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The interpretation of the terms in this equation is similar to our reasoning when ob-
taining (25)-(26). Applying the Laplace transform to the second equation results in 
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The inverse Laplace transform for (29) results in equation (28) with the same values 
of 1s  and 2s   . This is not surprising, as it can be easily seen that both settings are 
probabilistically equivalent.    Using the Laplace transforms technique, some other 
criterions of acceptance can be also considered (Finkelstein and Zarudnij, 2002).   
 

 
4. CONCLUDING REMARKS 
 
Probabilistic risk assessment is usually rather complicated. The main problem is to 
find a suitable model that will give a possibility of a reasonable mathematical descrip-
tion and at the same time be real and practical. In this paper we have considered some 
simple approaches for defining and modeling characteristics of acceptable risk. 
     The mean acceptable loss is a natural acceptance criterion, but in many situations it 
is obviously not sufficient. By defining the Cdf of acceptable loss )(cGa one can solve 
the problem of classification of the real loss theoretically via a suitable stochastic 
comparison of )(cG  with )(cGa . Defining )(cGa  in practice is rather subjective and 
should be justified by the detailed analyses of the outcomes of harmful events under 
consideration. 
     The other way of describing )(cGa  is to perform a discretization of the c -axis by 
considering regions, e.g., with acceptable loss, intermediate loss and unacceptable 
loss. Alternatively, binary models for acceptance criteria can be also considered. In 
Section 3.2 we deal with a specific model, when the shocks from the Poisson process 
are ‘not allowed’ to be too close. 
 
References 
 
Block H.W., Borges W. and Savits T.H. (1985). Age dependent minimal repair, J. 
Appl. Prob. 22,370-386. 

Cox D.R. and Isham V. Point processes, Chapman and Hall, London, 1980. 

Finkelstein, M. and Zarudnij, V. (2002). Laplace transform methods and fast repair 
approximations for multiple availability and its generalizations.  IEEE Transactions 
on Reliability, 51, 168-177 

Finkelstein, M. (2007). Shocks in homogeneous and heterogeneous populations.  Re-
liability Engineering and System Safety, 92, 569-575 

Kalbfleish, J.D. and Prentice, R.L. The Statistical Analyses of Failure Time Data. 
John Wiley & Sons, 1980. 

Kaas R, Coovaerts, M., Dhaene, J. and Denuit, M. Modern Acruarial Risk Theory. 
Kluwer, 2001. 



 9 

Ross S.M.  Stochastic Processes. John Wiley & Sons, 1996. 

Thompson W.A. Ir. Point process models with applications to safety and reliability. 
London, Chapman and Hall, 1988. 

Vrijling J.K. (1995). A framework for risk evaluation. Journal of Hazardous Materi-
als, 43: 245-261. 

Ushakov I. A. and Harrison R.A.  Handbook of Reliability Engineering. John Wiley 
& Sons, 1994.  
 


